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ABSTRACT
In wireless ad hoc networks, capacity can be traded for delay.
This tradeoff has been the subject of a number of studies,
mainly concentrating on the two extremes: either minimiz-
ing the delay or maximizing the capacity. However, in be-
tween these extremes, there are schemes that allow instan-
tiations of various degrees of this tradeoff. Infostations,
which offer geographically intermittent coverage at high speeds,
are one such an example. Indeed, through the use of the
Infostation networking paradigm, the capacity of a mo-
bile network can be increased at the expense of delay. We
propose to further extend the Infostation concept by inte-
grating it with the ad hoc networking technology. We refer
to this networking model as the Shared Wireless Infosta-
tion Model (SWIM). SWIM allows additional improvement
in the capacity-delay tradeoff through a moderate increase
in the storage requirements. To demonstrate how SWIM
can be applied to solve a practical problem, we use the ex-
ample of a biological information acquisition system - radio-
tagged whales - as nodes in an ad hoc network. We derive
an analytical formula for the distribution of end-to-end de-
lays and calculate the storage requirements. We further ex-
tend SWIM by allowing multi-tiered operation; which in our
biological information acquisition system could be realized
through seabirds acting as mobile data collection nodes.
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1. INTRODUCTION
Currently, there are several possible paradigms for wire-

less mobile communication, for example, cellular, ad hoc,
wireless LAN, and Infostations [1, 2]. In cellular systems,
users enjoy constant connectivity1 with at least some mini-
mum level of service. Thus, although the delay is small, the
capacity is limited as well. In ad hoc networks, the transmis-
sion range is significantly smaller than in cellular networks
and, thus, the reuse of radio channels can significantly im-
prove the overall network capacity. In mobile ad hoc net-
works, however, continuous connectivity cannot be guaran-
teed; nodes can separate from the network leading to net-
work partition. In the Infostationmodel, users can connect
to the network in the vicinity of ports (or Infostations),
which are geographically distributed throughout the area of
network coverage. The Infostation architecture which was
originally proposed by researchers at WINLAB2, includes
low-power base stations3 [3]. Infostations provide strong
radio signal quality to small disjoint geographical areas and,
as a result, offer very high rates to users in these areas.
However, due to the lack of continuous coverage, this high
data rate comes at the expense of providing intermittent
connectivity only. In this regard, the above three technolo-
gies are instantiations of the capacity-delay tradeoff, which
characterizes mobile communications.
Clearly, the choice of technology depends on the applica-

tion that the network is intended to support. For real-time
constant bit rate voice traffic, cellular is a better fit than
Infostations. However, wireless Internet access may also
conceivably be provided with ad hoc technology. Non-delay
critical applications, such as certain types of data acquisition
systems, may be well suited to the Infostations model.

1within the limitations of the radio link constraints
2Rutgers University
3called Infostations
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More specifically, the Infostation network architecture
should be used for applications which can tolerate signifi-
cant delay. Since a node that wishes to transmit data may
be located outside the Infostations’ coverage areas for an
extended period of time and must always transmit to an
Infostation directly, large delays may result. Upon arrival
in a coverage zone, the node can transmit at very high bit-
rates. Thus, Infostations trade connectivity for capacity,
by exploiting the mobility of the nodes.
Grossglauser and Tse [4] demonstrate the above capacity-

mobility tradeoff by showing that the average long-term
throughput per source-destination pair can be kept constant
even as the node density increases for a network of mobile
nodes. This contrasts with the result shown by Gupta and
Kumar [5], which states that as the number of nodes per unit
area increases, the throughput of each connection decreases
at a rate 1√

n
, where n is the number of nodes. The discrep-

ancy between the two results is explained in the difference of
the models used in the two works; [5] assumes fixed nodes,
while [4] allows the nodes to move. This mobility increases
network capacity. Both [4, 5] assume systems with possibly
unbounded delays. In the Infostations model, network di-
versity due to mobility of nodes is exploited by allowing the
nodes to transmit at times with larger signal quality to get
the improved throughput at the expense of potentially large
delays.
In this work, we further extend this capacity-delay trade-

off by proposing a modification to the Infostations concept.
As the reader may recall, in the Infostations model, a user
needs to physically travel to the vicinity of an Infostation
to communicate. We propose allowing information to travel
through the network, in addition to the user itself. In other
words, the information reaches the Infostation by sharing
(replicating and diffusing) itself in the network, using the
mobile nodes as physical carriers. Due to the nature of the
information propagation through the network, we term this
networking architecture Shared Wireless Infostation Model
or SWIM. A careful reader will easily recognize that SWIM
is a marriage of the Infostations concept with the ad hoc
networking model. Moreover, propagation of information
packets within SWIM resembles the spreading of a disease,
with the nodes in the network acting as carriers of an illness,
and the sharing of data with other nodes, acting as the trans-
mission of the disease from an infected to a healthy individ-
ual. Finally, when a node that carries the packet reaches one
of the Infostations, the packet is “offloaded” to the network
and discarded from the node. In our analogy of the disease
epidemic, this is equivalent to an infected carrier reaching
a “healing” center, in which the carrier gets rid of the dis-
ease. Furthermore, by storing the identity of the packets
that were offloaded to an Infostation, the carrier will not
accept such packets again in the future; i.e., developing an
“immunity” to the disease.
What are the benefits of SWIM vis-à-vis the Infostations

model? Clearly, by allowing the packet to spread throughout
the mobile nodes, the delay until one of the replicas reaches
an Infostation can be significantly reduced. However, this
comes at a price; spreading of the packets to other nodes
consumes network capacity. Thus, again, we are faced with
the capacity-delay tradeoff. We have developed a new way
to control this tradeoff by controlling the parameters of the
spread; for example, by controlling the probability of packet
transmission between two adjacent nodes (analogous to the

probability of infection in our epidemic model), transmission
range of each node (analogous to the infection distance in
our epidemic model), or the number and distribution of the
Infostations (analogous to the number and location of the
hospitals in our epidemic model). SWIM also allows us to
study another aspect of the capacity-delay tradeoff, namely
the amount of storage required to realize a particular in-
stance of this tradeoff.
In this paper, we present the study of the SWIM concept

through evaluation of an example application: the biolog-
ical information acquisition system. We model the system
analytically and provide numerical evaluations of certain pa-
rameters. This allows us to learn about the trends in the
system performance as system parameters vary. This also
permits us closer examination of the capacity-delay trade-
off. Biological systems fall into the category of unbounded
delay discussed earlier. We can assume that since animals
have been behaving similarly for years, old data may be as
valuable as recent data and we say that data is not time-
critical on any time-scale. Due to space limitations, we omit
from this paper more extensive modeling and analysis. In
particular, we do not present here how the vast knowledge
in epidemic modeling could be leveraged from in studying
SWIM. Those results will be presented in a future publica-
tion.
In the next section, we examine the whale data acquisi-

tion problem and consider some of the biological incentive
for tracking and studying whales. Next, we propose a partic-
ular method of information sharing and study the suitability
of the SWIM architecture, so that rather than having each
whale transmit directly to an Infostation, whales that come
in sufficiently close contact with each other may share infor-
mation. Then, any of these whales that come in the vicinity
of a SWIM station could upload all the stored data.

2. A BIOLOGICAL INFORMATION ACQUI-
SITION SYSTEM

Due to the ever-decreasing whale population, biologists
wish to collect data about these creatures to help to preserve
them [6]. In particular, whales and other marine mammals
are currently of concern in relation to several marine en-
vironmental issues. Underwater noise pollution has been
shown to affect these creatures severely. For example, upon
hearing noise from underwater tests, beluga whales will often
flee the location at full speed for 2-3 days and not return to
the site for weeks. Beaked whales have been stranded in as-
sociation with naval exercises in many circumstances. The
tagging and tracking of these animals can provide more data
about their natural behavior and response to human distur-
bances, such as heart rate, body temperature, speed and
acceleration, dive depth and shape.
Currently, one of the primary methods of collecting data

from free-ranging animals is radio tagging. Radio frequency
devices are implanted or attached to animals, and transceivers
measure and collect data concerning the animal and its en-
vironment. This data is collected in a continuous manner,
then partitioned into discrete packets, and stored in memory
with packet identifiers. An example of such a tag is shown in
Figure 1. Currently, radio tags are most often used with Ar-
gos LEO satellite service [7]. Data collected on the whales
is offloaded to a satellite, if the whale is surfacing while the
satellite orbits overhead. The SWIM model offers a lower
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Figure 1: Whale tag prototype, to be delivered using
a crossbow

cost alternative to the satellite system, where packets that
have been stored on the whales are transmitted directly to
the SWIM stations.
Most whales follow consistent migration and surfacing

patterns. Different types of whales have known typical dive
times; times during which they remain underwater without
surfacing. After several dives, the whales socialize and feed
near the surface of the water for minutes or hours. Some
whales are known to return to the same feeding grounds
at regular intervals. These grounds offer excellent locations
for the placement of offloading stations (i.e., the SWIM sta-
tions), allowing for unpredictable movement of the whales,
then their return for upload at the known locations. As well,
these grounds attract many different whales and present an
excellent opportunity for information sharing, as we will dis-
cuss later.
Since the whales spend much of their time underwater,

where RF signal transmission is not practical, the brief time
they surface may not be sufficient to offload extensive amounts
of information at the very low data rate of the satellite tags.
As a consequence, we propose to implement a new biolog-
ical information acquisition system through the use of the
SWIM networking architecture, replacing the rather costly
and low data rate satellite collection. A network of close-
range, high-bandwidth stations, previously described as the
SWIM architecture, in addition to low-cost and low-power
tags, is precisely a solution that could allow the tags to up-
load their information quickly and efficiently.
Specifically, in our system, whales are equipped with a

larger amount of memory than in today’s “direct offload-
ing” systems. Data that is collected on a particular whale is
stored locally. However, as a whale comes in close proximity
to another whale, the stored information may be transmit-
ted4 and stored in the other whale’s memory as well. As the
whales migrate throughout the system, a whale that comes
in close contact with one of the SWIM stations, offloads all
the data in its memory (whether its own data or data from
other whales) onto the SWIM station. Thus, as the whales
feed and socialize, the devices upload the packets of data
to the appropriately placed SWIM stations at high bit-rate.
After offloading its stored information, the whale’s memory
is then cleared.

4with some “infection probability”

Of course, implementation of such a system requires to ad-
dress a number of critical design choices, such as the proba-
bility of transmitting the information from one whale to an-
other, the transmission range of the whales and the SWIM
stations, the amount of storage which should be placed on
the whales, the time a packet should be deleted from a whale
tag, etc. Additionally, there are many alternative system de-
signs. For example, consider the problem of deletion of the
information from the whale storage. One possible design al-
ternative is to estimate the probability, as a function of time,
that a piece of information will be offloaded to a SWIM sta-
tion. Then, by putting a “timestamp” on each piece of infor-
mation, the information will be deleted from the memory of
every whale when the timestamp expires. Another alterna-
tive could be to use “invalidate” packets, so that whenever
a piece of information is offloaded, the invalidate packet is
injected into the whales and spread throughout the system,
erasing the information from any whale that the invalidate
packet visits. In this work, we employ the first choice, leav-
ing the examination of the second and other strategies for
future works.
In particular, to estimate the time by which a piece of

information can be deleted from the system, the number
of copies of the information in the system is modeled as a
discrete Markov chain, following the model of an infectious
disease [8]. From this Markov chain, the time that a packet
is present in the system is found, and the termination cri-
teria is determined based on the desired probabilities that
the packets are received at the stations. Our results show
how to choose expiration times for the packets for a desired
reliability level of delivery. This is equivalent to imposing a
probabilistic end-to-end delay constraint in typical ad hoc
networks. Given these expiration times, we then calculate
the required storage capacities for different design scenarios
and mobility models. Trends for a variety of design param-
eters are also investigated.

3. OUR MODELS

3.1 Network model
As the whale surfaces and exposes its RF antenna, it may

transmit to a close-by SWIM station, usually one within the
line of sight. Typically, the SWIM stations will be placed
on buoys, floating in the water. Naturally, one would dis-
tribute several stationary SWIM stations within the trans-
mission range of the known whale paths. After receiving and
storing the information from the whales, the SWIM stations
would transmit the information to shore, either by coordi-
nation with other SWIM stations, for example by creating
another ad hoc network of SWIM stations, or directly to a
satellite, whenever the next satellite passes overhead. Note
that we leave open the question of how the information is
conveyed from the SWIM stations to the terrestrial network,
as the design of the network of whale tags is, to a large de-
gree, independent from the design of the inter SWIM station
connectivity. We do, however, consider the effect of mobile
SWIM stations in a later section of this paper, assuming
that the SWIM stations have infinite capacity. We intend
to address in more detail the design of the network of the
SWIM stations in our future work.
Moving information from a whale tag to a SWIM station

may be time-consuming. This time is reduced by placing
several SWIM stations along the whales’ path, since a whale



www.manaraa.com

could surface near any of these SWIM stations and offload
its information. Use of the information sharing model fur-
ther improves the chance of getting the information ashore
quickly. However, using the SWIM model implies that a
whale tag would store not only its own data, but also in-
formation from other whales that is transmitted whenever
one whale is within transmission range of another. In this
way, only one whale would need to surface near a SWIM sta-
tion for a piece of information to be transmitted to shore.
Finally, we can additionally improve this delay by allowing
the SWIM stations to move themselves, such as, for exam-
ple, attaching the SWIM stations to seabirds; this extension
will be discussed later in the paper.
Though the whales are collecting data in a continuous

manner, for the purpose of transmission of the information,
it is more efficient to divide the data into packets. For ex-
ample, data collected during one day could be considered
one packet, separate from a packet collected on a different
day. Whales cannot transmit partial packets, though they
may transmit any number of whole packets during a sin-
gle surfacing event of a whale. Correctly sizing a packet
is also important, as overly large packets would reduce the
chance of the whole packet being received during a single
surfacing event, while overly small packets would lead to
high overhead. Each packet carries a distinct identifier, so
that a whale or a SWIM station will reject packets which
have already been received in the past. Finally, each packet
is stamped with a time stamp indicating its creation time
and the required Time-To-Live. When the Time-To-Live of
a packet expires, it is discarded from the whales’ tags.
This Time-To-Live field eliminates the need for clock syn-

chronization between the whales. The “expiration time” is
known a priori, calculated by using system parameters as
described later. When the whale shares a packet with an-
other whale, the Time-To-Live of the transmitted packet
is reduced by the duration that the source whales carried
the packet, so the Time-To-Live field carries the remaining
time. Thus, all timing is performed using local clocks and
no synchronization between whales is needed.
Delay experienced in the network varies considerably de-

pending on the species of whale which carries the tag. One
might expect nearly daily surfacings near SWIM stations for
whales off the coast of the Hawaiian islands, leading to de-
lays on the order of hours. Whereas, migratory whales may
only visit known feeding grounds twice a year, so delays may
be on the order of months.
In this paper, we address neither the design of the radio

transmission system, nor the design of the MAC layer pro-
tocol for transmission between a tag and a SWIM station or
between two whale tags. For the purpose of this work, any
protocol with reasonably good reliability and some form of
acknowledgement of a correctly received packet will suffice.
As the devices implanted in the whales perform measure-

ments, the collected information is divided into separate
packets, which are stored in the memory of the whale tag.
Anytime one whale comes within transmission range of an-
other whale, the tags on the two whales share information
by exchanging the stored information packets. Anytime a
whale comes within transmission range of a SWIM station,
the information from the whale tag is transmitted to the
station and erased from the tag. Furthermore, when the
timestamp on the packet expires, the packet is discarded
from the tag’s memory. Due to the information sharing, the

Figure 2: Markov chain model of an infectious dis-
ease with susceptible, infected, and recovered states

storage requirement of a whale tag increases. To evaluate
this extra storage requirement, we use Markov Chains for
modeling of infectious diseases to determine the packet ter-
mination criteria. More specifically, given the probability
level, we develop a formula for the necessary Time-To-Live
of a packet, so one can be confident that with this probabil-
ity level, the packet will be offloaded onto one of the SWIM
stations in the system.

3.2 Analytical model
The propagation of each packet of data information gener-

ated by a whale can be modeled as spread of one infectious
disease. The modeling of diseases in fixed networks have
been studied in the past [9], and this model is used in a
similar manner in this case. Using the framework from an
infectious disease model [8], a whale is “infected” if it has
the data packet stored in its memory. The whale is “sus-
ceptible” (to infection) if it does not yet have the packet
stored in memory, but could potentially acquire the packet
from another whale. The whale is “recovered” (healed from
the disease) if it has offloaded its information to a buoy (a
SWIM station). Note that through the use of the pack-
ets’ identifications, a packet will be stored only once in each
tag (one cannot be infected multiple times with the same
disease). Furthermore, by storing the identifications of the
previously received packets, a whale may become “immune”
to receiving the same packet again.
Therefore, as shown in Figure 2, the susceptible state

S(t) represents the number of whales in the system which
are “susceptible,” infected state I(t) represents the number
of “infected” whales, and R(t) represents the “recovered”
whales. β represents the contact rate of the whales. Sup-
pose there are N whales in the system, then a whale contacts
β(N − 1) other whales per unit time, of which S

(N−1)
do not

yet have the disease. Therefore, the transition rate from
state S to state I becomes

total infection rate
= (#infected)(contact rate)(# susceptible whales)
= I [β(N − 1)][ S

(N−1)
] = βSI

The recovery rate is labeled as γ – it is the contact rate of
a whale with a SWIM station. Then

total recovery rate
= (whale-buoy contact rate)(# infected whales)
= γI

Recall that if there are multiple buoys, then γ represents the
contact rate per buoy; e.g., γ will double if the number of
buoys is doubled.
In this paper, one objective will be to find a distribution

of values T , where T is the time from the packet generation
until the first time the packet is offloaded to a buoy; that is
the time until any one whale moves to state R. As a result,
the entire number of whales N will be contained in the two
states I and S. Since we assumed that different packets in
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Figure 3: Markov chain model of an infectious dis-
ease without ’recovered’ state, since a transition to
the recovered state represents the end of the simu-
lation

the system propagate independently, we consider only one
packet at a time. Thus, at time t = 0 only one whale is
infected with the packet. Therefore, the initial conditions
for the system are:

S(0) = N − 1, I(0) = 1, S + I = N,
R(t) = 0 for t < T and R(T ) = 1

First we find I(t), the number of infected whales as a func-
tion of time. Then, the cumulative probability distribution
for T is derived. Once the cumulative distribution F (T ) is
known, it is possible to choose a desired probability level,
so that at some time τ , F (τ ) equals this probability level.
In other words, by time τ , one can be confident with the
selected probability level, F (τ ), that the packet has reached
at least one of the buoys in the system.

3.3 Solving for cumulative distribution F (T )

We are interested in the transient solution to the Markov
Chain in Figure 3, with the following first-order differential
equation:

dS
dt

= −βSI
dI
dt

= βSI = β(N − I)I = βNI − βI2

This differential equation is separable and can be solved
with the initial condition I(0) = 1 to give the solution

I(t) =
N

1 + e−βNt(N − 1)
,

which can then be used to find the cumulative distribution
function

F (T ) = 1−K

„
N − 1

eβNT +N − 1

« γ
β

. (1)

The reader is referred to the Appendix for more details
about the solution of (1).

3.4 Random midway mobility model
Solution of the above analytical model depends on two

parameters, β and γ. In particular, these two parameters
are strongly affected by the physical set up of the system,
such as the mobility model of the whales, the number and
the placement of the buoys, the infection radius of the buoys
and the whales, etc. We first consider the choice of a simple
mobility model, the random midway mobility model.
In the random midway mobility model, the whales swim

in straight lines for a fixed small time interval, δt, with a
randomly chosen velocity from [vmin, vmax] and in a random
direction distributed uniformly between 0 and 2π. At the
beginning of each time interval, a new velocity and a new
direction are chosen.
Unfortunately, even for this relatively simple mobility model,

estimation of the two system parameters, the β and the γ,

is not trivial. Thus, we resorted to simulation to for evalua-
tion of these two parameters. In particular, we have devel-
oped an event-driven simulation, which models the whales’
movement and computes the contact rates among the whales
and between the whales and the buoys, using the random
midway mobility model above, with vmin = 0[m/s] and
vmax = 6[m/s]. The whales swim along a rectangular region
with edges that wrap around, creating a toroidal surface.
Parameters of the simulation include: the infection radius

for the whales and for the buoys, the number of whales,
the number of buoys, and the size of the rectangular re-
gion. One whale generates one packet at the beginning of
the simulation. At every iteration, the distances between
each whale and all other whales and buoys are calculated.
If a whale carrying a packet is within the infection range
of another whale, then the packet is replicated at the other
whale. If any whale carrying the packet is within infection
range of a buoy, then the simulation is stopped, recording
the time, T , from the creation of the packet until the ter-
mination of the simulation. The number of whales infected
at that time equals the number of the packet replications
that might be expected in the system. The simulation is
run multiple times, and the data is compiled, representing
the cumulative distribution function, F (T ). This F (T ) ob-
tained through simulation will be then compared with the
analytical solution obtained in the previous section. How-
ever, to do so, we need first to evaluate the two parameters
β and γ - we proceed with this task in the next section.
The simple random midway mobility model was extended

to a more sophisticated model involving migration and group-
ing tendencies of the whales toward each other and toward
feeding grounds. A further extension of the model involves
motion of the SWIM stations (e.g., replacing buoys with
seabirds). These extensions are discussed later in the pa-
per. First, we examine the results of the random midway
mobility model.

3.5 Comparison of analysis and simulation
To proceed with our evaluation of the biological informa-

tion acquisition system, we need to estimate the parameters
β and γ using the simulation (previously used to obtain
F (T )). The contact rate β is calculated by recording the
times between infections at each value of I for many simu-
lations. For example, the time interval, ∆t, from the time
the system enters the state I = 2 until it moves to the state
I = 3 is recorded and averaged for many simulations. Since
the rate from state S to state I is βSI , then β ≈ 1

SI∆t
. These

values for β are then averaged over the different states I to
give an overall β for the system.
Recall that γ quantifies the rate of infection of buoys

per whale, since the rate of whales leaving state I is γI .
Since γ is independent of I , running the simulation, while
counting the number of buoys that would be infected dur-
ing some long time period without actually infecting these
buoys, allows for the calculation of the contact rate while
keeping I constant. This rate equals γI , and thus γ =
rate of infection of buoys

I
may be calculated.

Equipped with the values of the parameters β and γ, we
are now able to compare the theoretical F (T ) distribution
with the F (T ) obtained from the simulation. For the com-
parison, we utilize the χ2 statistical test[10], which is used
to verify the hypothesis that a sampled process is likely to
have arisen from a given distribution. In our case 10 bins
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Figure 4: Cumulative distributions of T , the time
from packet creation until offloading, for different
numbers of whales in the system

were used in the χ2 test, so if the χ2 statistic is lower than
1.152 - the critical value of a χ2 distribution with 9 degrees
of freedom - then the distributions are said to agree with
99.9% certainty. Data compiled in the Appendix shows the
excellent agreement between the simulation and the theory
for many different values of the parameters using this uni-
form random midway mobility model. From this table, we
can see the direct linear dependence of γ on the number of
buoys; e.g., as we would expect, twice as many buoys leads
to a γ value which is twice as large. Also, the γ values are in-
dependent of the number of whales, as each infected whale
has the same opportunity to upload its packet to a buoy,
regardless of the number of whales around it.5

As expected, the table shows the β values are independent
of the numbers of buoys. The β values are nearly constant,
though they do decrease slightly with an increase in number
of whales. This is due to the occasional overlap of trans-
mission regions of the whales as they swim on the flat torus
and implies that β is somewhat dependent on I . Our model
approximates the system by assuming the overlap of these
regions is negligible. Though this approximation might not
be good for very dense networks (a very large number of
whales present in a small area), the case that we consider
here is sufficiently sparse, so that the overlap phenomenon
is, indeed, negligible. The match of the analytical and sim-
ulation results confirms this claim.

3.6 Parameters and Quantities of Interest
A result of the simulation is the cumulative distribution

function, F (T ), and is depicted in Figure 4 for different num-
ber of whales in the system, N = 10, 20, 30, 40. From the
F (T ) curves, one can pick a threshold probability Pthresh to
find the time at which with probability Pthresh, the packet

will be offloaded to one of the buoys; i.e., T = F−1(Pthresh).
For example, if Pthresh = 0.9 then the required T is shown
in Figure 5.
We have examined the effect of the parameters in the mo-

bility model on F (T ) and the number of infected whales
at time T . Due to space limitations, we omit the detailed
description of those outcomes, only stating some selected re-
sults. Changing the speeds of the whales amounts to assum-

5The overall rate out of state I is γI , which increases as we
increase I , but γ is the contact rate per whale to any buoy
and this is constant.
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Figure 5: Average delay T until the packet is of-
floaded with probability 0.9

ing a different number of seconds per timestep. This does
not change the curves, since we plot in units of timesteps
rather than minutes or hours. The placement of buoys has
some effect on the F (T ) distribution, but this effect is lim-
ited and is exhibited in a more interesting manner in the
mobility model discussed in the following section.

4. GROUPING/FEEDING MOBILITY
We have experimented with more sophisticated whale mo-

bility models that more realistically capture the physical
whale behavior by, for example, incorporating feeding grounds.
In general, these feeding grounds are centers of attraction
for the whales, where the whales typically swim slower or
even stop at times. In this enhanced model, three issues
govern the direction of the whales’ positions at any time:
migration, grouping of whales, and direction of the near-
est feeding ground. Females tend group together with other
females, while grown males tend to be more solitary and
group with females but not with other males. Many papers
in biological journals support these dominant factors of the
whale mobility model [11, 12, 13].
In the simulation results presented here, the speed of a

whale is randomly chosen between vmin = 2[m/s] and vmax =
3[m/s] for whales outside the feeding areas (though males
travel twice as fast 20 % of the time) and between vmin =
0[m/s] and vmax = 1[m/s] when within a feeding area. Any
whale may choose to stop inside a feeding area, however only
males take short breaks when traveling outside the feed-
ing areas, since they travel faster and, typically, get tired
more quickly. Direction for the whales is determined by a
weighted vector sum of the directions of migration, of the di-
rection to the nearest female, and of the direction the nearest
feeding area.
It is worthwhile to emphasize that our analytical solution,

as expressed by equation 1, is still valid. The changes to the
physical parameters are all captured in the values of β and
γ. Thus, to evaluate the system through the use of our
analytical model and under a different mobility pattern, we
only need to recompute β and γ.

4.1 Finding the direction vector
As stated earlier, the overall direction vector for each

whale is calculated by incorporating these individual mobil-
ity elements. This is achieved by taking a weighted average
of the migration pattern of the whale, the location of the
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closest female in the vicinity of the whale’s position, and
the direction of the closest feeding area. We first discuss
each mobility element separately.
A migration direction is defined for each whale. This di-

rection reflects the general travel goal of the whale, although
the migration direction is modulated by a random whale be-
havior. The migration direction is not an absolute direction,
but rather an angle (in radians) that is the mean of a Gaus-
sian distribution representing the migration angle [14]. Ev-
ery timestep, δt, the whale generates another Gaussian with
a mean of the migration direction and some standard de-
viation. Increasing the standard deviation introduces more
randomness into the mobility pattern of the whale. Migra-
tion vectors are always assumed to have weight 1.
If a given whale is within sensing range of other whales,

it will set its grouping vector in the direction of the closest
female. Whales which are already grouped (within half of
the transmission range of a female) need not set their group-
ing vector. It is assumed that the mobility of each whale in
the group would then be governed by the same migration
and food, and they would tend to stay grouped together,
swimming in parallel.
The grouping weight is another Gaussian variable, which,

in our simulation, has the mean of 0.8 and the standard de-
viation 0.5. To help the whales break away from groups,
there is also a maxGroupingTime variable, set to 3 in our
simulation. If the whales have grouped for longer than the
maxGroupingTime then the grouping weight is changed to
0.0 for the next iteration. These values offer a model which
appears to empirically resemble the whales mobility pat-
terns, where some of the whales group and others break off
from the groups.
The whales will swim toward feeding/socializing areas if

they are hungry. These areas are modeled as circles of radius
on the order of 20 to 30 km at the surface of the water
and with specified center locations. The feeding areas are
separated by a distance, which we have assumed to be about
200 km in our simulation. The distance from a whale to the
closest point of a feeding area is calculated as

[(whale position - center of feeding area) - (radius of area)],

and the feeding area contribution of the overall whale’s di-
rection vector is a unit vector pointing in the direction of
the closest feeding area.
The hungry variable of a whale measures the whale’s feel-

ing of hunger. If the whale is swimming outside the feeding
area, the hungry variable is increased, while it is decreased
inside a feeding area. A whale will be more attracted to a
feeding area, the hungrier it is. The contribution of the at-
traction to food is expressed as a weighting factor, modeled
as Gaussian variable with mean 0.4*hungry and standard
deviation 0.3*hungry.
A motion consistency factor must also be considered, since

it is quite unlikely for a whale to completely change direc-
tion at each timestep. The consistency factor takes values
between 0 and 1. The old direction, multiplied by the con-
sistency factor, is added to the new direction, multiplied by
(1−consistency factor) and the result is again normalized to
a unit vector. This, effectively, implements a low-pass filter
for the overall mobility direction vector.
With the resultant direction unit vector and speed, the

whale locations are updated at every δ time interval:

new location = old location+
(speed) ∗ (direction unit vector).

4.2 Results for Grouping/Feeding Mobility
We have experimented with the extended mobility model

and obtained results that indicate an agreement between the
simulation and the theory for different values of the param-
eters. These are shown in the Appendix table.
Using this extended mobility model, there are many choices

of the parameters to examine. As with the random midway
mobility model, we study trends by varying the density of
whales, density of buoys, the infection radii of the whales
and of the buoys, as well as the speed of the whales and
the placement of buoys. A more subtle parameter is the
percentage of females whales. Reducing the percentage of
female whales amounts to less attraction between whales,
since the males are attracted to the females, but not to other
males, and the females also group with females. The “sens-
ing region” parameter is the radius of the circle where a
whale can “sense” a nearby feeding ground. If the distance
between the whale and any feeding ground is larger than
this sensing radius, then the whale is not attracted to the
feeding ground. Decreasing the consistency factor induces
faster reaction times to nearby food or grouping with nearby
whales. Low consistencies quickly degenerate the system, so
that whales group very closely to each other and feeding
grounds resulting in larger delays.
Due to space limitation, we present here only selected re-

sults. In particular, we show the effects of the tendency
toward other whales, the arrangements of buoys, and the
probabilities of successful transmission on the simulation re-
sults. We consider how the average time until packet offload-
ing and the number of whales infected at T are affected by
varying grouping weights and SWIM station positions.
Figures 6 and 7 consider different grouping weights for a

system with buoys at maximum separation on the toroidal
surface. To examine grouping weights without feeding ef-
fects, we set feeding weights to zero. Since there is no ten-
dency toward the feeding grounds, there is no advantage to
placing buoys in any particular location, and we place the
buoys uniformly throughout the area for these tests.
Figure 6 shows the distribution of the number of infected

whales (out of the total N = 15) at the offload time T . We
observe that, as the grouping weight decreases, fewer whales
are infected at the offloading time. Thus, for more solitary
whale behavior and all else equal, there are fewer copies of
a packet present in the network.
Figure 7 shows that increasing the grouping weight first

increases the probability of packet offloading at time T ,
shortening the average packet offloading time. This is ex-
pected, since higher grouping increases the number of copies
of the packet in the system. However, increasing the group-
ing weight too much actually decreases the probabilities of
packet offloading. More grouping of whales results in a
smaller spread in overall whale location, so there is less op-
portunity for offloading of packets and the delays increase.
For these reasons, we can postulate that for any set of pa-
rameters, there is some optimum grouping weight, such that
F (T ) increases most quickly with T . For the case shown in
the Figure 7, this weight is near 0.4.
Feeding weights variables determine the magnitude of whales’
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Figure 6: Comparison of distributions of copies of
the packet in the system at T for different grouping
weights
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Figure 7: Cumulative distributions of T which show
the effect of varying the tendency of the whales to-
ward other females

tendencies toward feeding grounds. Varying non-zero feed-
ing weights results in little difference in the F (T ) curves ob-
tained. Varying the number of feeding grounds shows more
effect. As one might expect, having more feeding grounds
increases the delay, because there is a larger chance that
whales may be attracted to locations without SWIM sta-
tions. However, if the stations are placed in the middle of
these feeding grounds, then the whales are more likely to
reach the vicinity of an SWIM station. For this reason,
the most significant differences are shown when the buoys
are placed inside the feeding grounds, as opposed to outside
the feeding grounds. Figure 8 assumes 1 buoy in the system
and 15 whales in each of the four arrangements of the buoys:
buoys at the center of feeding grounds, buoys near feeding
grounds, buoys uniformly distributed away from the feed-
ing grounds, and buoys distributed randomly with Poisson
distribution throughout the area. Figure 8 shows that the
situation with SWIM stations at the center of the feeding
grounds leads to the shortest offloading times, since whales
are attracted to feeding grounds and are likely to be within
range of a SWIM station by approaching a feeding ground
from any direction. The situation with SWIM stations near
to (rather than at the center of) the feeding grounds is most
likely to arise in practice, such as placing the stations on
the shore near the feeding grounds. Fortunately, this situa-
tion also shows similarly short offloading times, because the
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Figure 8: Effect of different buoy arrangements on
the cumulative distribution of T

attraction of the whales to the feeding grounds continues
to place the whales near the SWIM stations. The situa-
tion with stations at maximum separation places one buoy
outside the feeding region, then places all other buoys at
maximum Euclidean distance from each other. This results
in a curve which suggests curious behavior: first increasing
slowly, then more quickly. This phenomenon is a result of
the relationship between the position of the feeding grounds
and the position of the buoys, which gives preference to cer-
tain T values. In the Poisson distributed case, the attraction
of the whales to the feeding grounds offers no advantage, so
the F (T ) curve increases steadily.
Figure 9 shows that very few whales are infected with the

packet, when the stations are at the center of the feeding
grounds. This is due quick offloading times. Since whales
are attracted to the SWIM stations, they are likely to offload
the packet before having a chance to share the information
with many other whales. For the same reason, the SWIM
stations near the centers of the feeding grounds show the
same trend. The maximum separation case shows that fre-
quently almost all whales become infected with the packet
before it is offloaded. This is due to the fact that the whales
are attracted to the feeding grounds which are relatively far
from the SWIM stations, so there is much more opportunity
to share the information packets. The Poisson case shows a
more even distribution of the number of whales which carry
the packets, since the position of the SWIM stations is com-
pletely independent from feeding grounds, which represent
locations of attraction for the whales.
To save capacity in the network the user might wish to

control the probability with which a packet is shared be-
tween nodes. We can say that there is probability p of suc-
cessful transmission given an opportunity to exchange data,
and analyze F (T ) curves for different p values. Figure 10
shows that for the mobility pattern using grouping weight
0.8, feeding weight 0.4, 15 whales, and 1 buoy placed near
the feeding ground, any success probability higher than 0.4
has an F (T ) curve nearly identical to the p = 1 case.

5. MULTITIER MOBILITY
Up to this point, we have assumed that the collection

points are fixed in their locations. Another possible model
for the biological information acquisition system is to con-
sider mobile collection points as well as mobile nodes – for
example the case where the SWIM stations are mounted on
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Figure 10: Cumulative distributions of T , varying
probabilities p of successful packet transmission

seabirds, that glide above the ocean along the turbulent air
above the waves. Using the same system parameters as be-
fore (i.e., the same number of whales and buoys), the graph
in Figure 11 shows that considerably increasing the speed of
the buoys has a positive effect on the packet offload time.
However, at a SWIM station speed of 3, higher delays are
observed in the system. Since the whales travel at speeds
close to 3, the speed 3 stations are less likely to pass through
a group of whales; it is likely that the distance between the
stations and the whales would remain constant. The higher
speeds of the buoys allow the mobile stations to pass through
groups of whales more often, and to stay close to the groups
for shorter periods each time. This higher frequency of vis-
iting allows the packets to be offloaded more often and at
more regular intervals.
Though varying the grouping weights has some small ef-

fect on the system for stationary SWIM stations, there is no
effect observed by varying the grouping weights for mobile
SWIM stations either on the F (T ) or on the distribution of
the number of packets in the system at time T .

5.1 Designing a system
The F (T ) curves and the numbers of infected whales for

each packet allow us to design a biological information ac-
quisition system. In designing the system, since there is no
interaction among the packets in the system, each packet
is assumed to propagate independently of any other packet.
This assumption is reasonable, as long as there is no priority
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Figure 11: Cumulative distribution curves with
varying speeds of SWIM stations

assigned to the packets.
Deep diving whales surface from a dive roughly once ev-

ery 40 minutes, so a packet containing information from
10 dives is generated every 400 minutes. Each timestep
in the simulation represents 1000 seconds, if each spatial
unit represents 1 km. Therefore, for each whale, the rate

of generation of packets is
1000 [sec/timestep]

400 [min/packet]∗60 [sec/min]
=

1
24

[packets/timestep]. Each packet stores the information
for 10 dives in 330 bytes. This memory accounts for packet
ID, position, coefficients representing the dive, and param-
eters about the water column.
The designer of the system first specifies a threshold prob-

ability Pthresh with which the packets should be offloaded
to a station. Suppose the designer chooses probability of 0.9
that any given packet from a whale will eventually reach a
station. Then, an F (T ) curve is plotted to find the appro-
priate value of T . The Time-To-Live field in the packet is
set to this value of T , to allow packets to “expire” and to
be removed from the network.
Suppose 15 adult whales are tagged and swim in an area

roughly 22500 km2, where 1 buoy is placed for data collec-
tion near a known feeding ground. The transmitting range of
the radio tags is 3.25km and reception range of the stations is
7.5 km. This can be modeled as system with N = 15 whales,
1 buoy, food weight of approximately 0.4, and the buoy po-
sition near, but not in the center of the feeding ground.
Utilizing the appropriate F (T ) curve from Figure 8, we see
that F−1(0.9) ≈ 562. The “expiration time” of the packets
is therefore 562 timesteps.
Using Little’s formula with generation rate λ = 1

24
timesteps

per packet per whale, the expected number of all the packet
replicas in the system is:

EP = (number of whales)λET
= 15 1

24
[packets/timestep](562 [timeteps])

= 351.25 [packets]

An estimate of the number of replicas of each packet in the
system, EI , is the expected number of whales infected by
a packet at time T . It can be shown from simulation that
EI = 7.1759 in this case. This number assists in the calcu-
lation of a global storage requirement for the radio devices,
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which is calculated as follows:

storage requirement
= (duplicates)(different packets)(bytes/packet)

= EI ∗EP ∗ (330 bytes/packet)
= (7.1759) ∗ (351.25) ∗ (330 bytes/packet)
= 831777 bytes ≈ 812kB

This 812 kB can be easily placed within the 15 tags re-
quiring only 54 kB per tag – a very feasible requirement.
In practice, one would want to include an extra safety fac-

tor in the memory calculation to protect against variability
in the number of packets stored in a tag, and not including
this factor would assume an ∞-queue system. However, we
believe such a safety factor is already included in the con-
servative estimate of the storage requirement. This estimate
assumes that any copy of the packet in the system at time
T exists in the system for the entire possible lifetime of the
packet, but in fact, the shared packets will only exist in the
system for some shorter time.
We can also consider trends in the total storage capacity

necessary for SWIM by performing the same calculations as
above using λ = 1

24
, varying parameters such as the num-

ber of whales. This is shown in Figure 12 using 1 buoy and
varying the number of whales from 10 to 40. Storage require-
ments in SWIM situation grow slightly due to the replication
of packets. If the density of whales is larger, then the packet
is shared with more whales and more storage is required.
This increased storage requirement is, however, mitigated
by the fact that the delay is reduced. On the other hand,
the expected delay for the non-sharing system is essentially
constant (approxmately 1175 timesteps) over different num-
bers of whales, since having more whales in the system offers
no advantage. In the non-sharing case, the particular whale
carrying the packet must reach the buoy. SWIM shares in-
formation, so if there is higher density of whales, there is
more sharing. Thus, SWIM achieves smaller delays as the
number of whales increases.
As one would expect, the storage requirements also vary

considerably for different arrangements of the SWIM sta-
tions. If the SWIM stations are placed at the center or near
the feeding grounds, packets are offloaded quicker and with-
out excessive sharing of data, resulting in requirements of 19
or 26 kB, respectively, per whale for a system of 15 whales
and 1 buoy. The maximum separated buoy case requires

193 kB/whale, and the Poisson distributed case requires 134
kB/whale. Since the time until packet offloading is gener-
ally larger in these cases, the whales tend to group and share
information more before offloading the packets.
In the multitiered case, the storage requirements may de-

crease or increase as the mobility of the SWIM stations in-
creases, depending on the speed of the SWIM stations rel-
ative to the speed of the whales. For stations moving at
speeds significantly higher than the speed of the whales,
less memory is required in the whale tags. However, for
stations moving at speeds comparable to the whales, signif-
icantly more memory is required, for the reasons discussed
earlier. For example, a system with 15 whales, and one
station moving at speed 9 units/timestep needs 23 kB of
memory per whale, while moving at speed 3 units/timestep
needs 70 kB/whale, as opposed to the 26 kB/whale required
for stationary buoys near the center of feeding grounds.

6. CONCLUSIONS
The Infostations concept is a networking paradigm that

trades delay for improved network capacity. Users are able
to experience very fast data rates, at the expense of inter-
mittent network connectivity. The Infostations model is
just one possible solution in the delay-capacity tradeoff in
wireless networks.
We have proposed in this paper to extend the Infostations

concept by integrating it with the ad hoc networking paradigm.
In particular, users may disseminate information packets
throughout the system to other users, in hope that one of
those replicas will reach one of the collection points when
one of these users is within reception distance from a col-
lection station. We refer to this augmented Infostations
model as the Shared Wireless Infostation Model and to the
collection stations as SWIM stations.
Clearly, because of the increased redundancy, the delay

until a packet reaches one of the collection stations is sig-
nificantly reduced. The delays of traditional Infostation
networks are shown to be 1.6 to 3.5 times the delay of the
SWIM model. A penalty of transmission bandwidth in the
system due to the replicating of information in SWIM is also
incurred, in addition to a modest increase in the storage re-
quirements. This additional bandwidth is proportional to
the number of duplicate packets in the system.
We have then applied the SWIM concept to the design of

an example application system - the biological acquisition
system. SWIM stations placed at the surface of the water
offer a low-cost solution to recover data collected on whale
tags using high bandwidth at the expense of delay in deliv-
ery. The sharing of data among the whales, as well as the use
of multiple SWIM stations, has been shown to significantly
reduce this end-to-end delay.
We first obtained an analytical cumulative distribution

function and then, incorporating biological considerations,
we used simulations to obtain the relevant values of the pa-
rameters for the analytical solution. This allowed us to com-
pute various performance measures, such as the distribution
of the packet offload times (useful, for example, in calcula-
tion of the Time-To-Live of the packets replicas), and curves
of the number of whales infected at the packet offloading
time (useful, for example, in designing the tag memory re-
quirements).
Through simulations, several trends and trade-offs were
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observed, such as reliability6 vs. storage space. More specif-
ically, if a packet is stored in the system for a longer pe-
riod of time and there are more copies, then there is higher
probability of the packet eventually reaching one of the of-
floading stations before it is discarded from the system. Al-
though increasing the number of whales also increases the
storage space required, the overall reliability (probability
that a packet reaches a collection station) is increased as
well. Increasing the number of buoys increases reliability
by increasing the cost of the system, though this does not
increase the tag memory requirement. Buoy positions and
mobility greatly affects the system reliability, while grouping
and feeding weights have much smaller impact.
The SharedWireless Infostation Model extends the Infostation

paradigm through information sharing between the nodes.
This model is well-suited to delay-tolerant applications such
as the above biological information acquistion system. Nev-
ertheless, this methodology can be also used to model and
evaluate other systems that use the extended Infostation
model. Though there is no upper bound on the delays
incurred in Infostation systems, SWIM significantly de-
creases average delays.
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APPENDIX

A. FINDING THE OFFLOADING TIME DIS-
TRIBUTION

This first-order differential equation for the number of
whales in the infected state at time t is separable and can
be solved with initial condition I(0) = 1 to give the solution

I(t) =
N

1 + e−βNt(N − 1)
.

Let T be the time from t = 0 until the information has
been first offloaded to any of the buoys. To find its c.d.f., it
is first necessary to calculate the probability Pr(T ≥ t+h),
where h is some small quantity that will go to 0, used to
formulate a differential equation. In this case, we assume
independent increments; that is, Pr(event in [0, t)) is inde-
pendent from Pr(event in [t, t+ h)).

Pr(no offload in interval[t, t + h] | no offload by t)
= 1− Pr(offload in interval[t, t+ h] | no offload by t)
= 1− (duration of interval)(rate of offload)
= 1− hγI(t)

⇒ Pr(T > t+ h) = Pr(no offload by t)∗
Pr( no offload in interval[t, t+ h] | no offload by t)

= Pr(T > t)[1− hγI(t)].

This can be used to find a differential equation for the
cumulative distribution function of T , which we will call F .
First, the differential equation for F (t) is found by using the
formula for Pr(t+ h) in terms of Pr(T > t) found above.

dF
dt

= lim
h→0

F (t+h)−F (t)
h

for small h > 0

= lim
h→0

− [Pr(T>t+h)−Pr(T>t)]
h

= lim
h→0

− 1
h
Pr(T > t)[(1− hγI(t))− 1]

= γI(t)Pr(T > t)
= γ N

1+e−βNt(N−1)
[1− F (t)].

This differential equation is also separable. We solve the
differential equation using the initial condition that F (0) =

πtx2
buoyM

area of grid
, since this is the probability of a whale being

placed within range of any of M SWIM stations at time 0.
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Table 1: χ2 stats varying whale and buoy numbers
Whales Buoys Avg β Avg γ χ2 Stat

10 1 6.32E-04 8.97E-04 0.052
15 1 6.22E-04 8.98E-04 0.058
20 1 6.10E-04 9.00E-04 0.078
25 1 5.96E-04 8.99E-04 0.058
30 1 5.81E-04 9.01E-04 0.056
35 1 5.66E-04 8.90E-04 0.063
40 1 5.48E-04 9.08E-04 0.065
10 2 6.38E-04 1.82E-03 0.028
15 2 6.22E-04 1.80E-03 0.033
20 2 6.09E-04 1.81E-03 0.037
25 2 5.96E-04 1.81E-03 0.030
30 2 5.80E-04 1.79E-03 0.026
35 2 5.65E-04 1.80E-03 0.038
40 2 5.48E-04 1.80E-03 0.025
10 3 6.33E-04 2.69E-03 0.025
15 3 6.21E-04 2.71E-03 0.029
20 3 6.08E-04 2.73E-03 0.045
25 3 5.95E-04 2.70E-03 0.034
30 3 5.79E-04 2.70E-03 0.036
35 3 5.66E-04 2.71E-03 0.034
40 3 5.48E-04 2.70E-03 0.032
10 4 6.30E-04 3.63E-03 0.017
15 4 6.20E-04 3.59E-03 0.026
20 4 6.10E-04 3.59E-03 0.028
25 4 5.95E-04 3.58E-03 0.031
30 4 5.79E-04 3.63E-03 0.035
35 4 5.64E-04 3.62E-03 0.041
40 4 5.48E-04 3.57E-03 0.027

Then,

F (t) = 1−K

„
N − 1

eβNt +N − 1

« γ
β

is the c.d.f. for T with K = [N−1
N

]
−γ
β [1 − πtx2

buoyM

area of grid
].

Notice that the property lim
t→∞

F (t) = 1, a necessary condition

of any c.d.f., is satisfied.

B. ANALYSIS VS. SIMULATION χ2 TEST
Table 1 compiles data using the random midway mobility

model, an area of size 300 by 300, the transmission/reception
radius for the whales of 7.5 units, transmission/reception
for the buoys of 15 units, showing good agreement between
analytical solution and simulation.


